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Inverse design of 3D reconfigurable
curvilinear modular origami structures
using geometric and topological
reconstructions

Kai Xiao 1, Zihe Liang1, Bihui Zou1, Xiang Zhou 2 & Jaehyung Ju 1

The recent development of modular origami structures has ushered in an era
for active metamaterials with multiple degrees of freedom (multi-DOF).
Notably, no systematic inverse design approach for 3D curvilinear modular
origami structures has been reported. Moreover, very few modular origami
topologies have been studied to design active metamaterials with multi-DOF.
Herein, we develop an inverse design method for constructing 3D reconfi-
gurable architected structures — we synthesize modular origami structures
whose unit cells can be volumetricallymapped into a prescribed 3D curvilinear
shape followed by volumetric shrinkage to construct modules. After mod-
ification of the tubular geometry, we search through all the possible geometric
and topological combinations of the modular origami structures to attain the
target mobility using a topological reconstruction of modules. Our inverse
design using geometric and topological reconstructions can provide an
effective solution to construct 3D curvilinear reconfigurable structures with
multi-DOF. Ourwork opens a path toward 3D reconfigurable systems based on
volumetric inverse design, such as 3D active metamaterials and 3D morphing
devices for automotive, aerospace, and biomedical engineering applications.

With the advancement of conventional manufacturing in both
additive1 and subtractive2 ways, the fabrication of complex 3D struc-
tures is being realized on nano3–7, micro8–12, meso13–19, and large
scales20–22. Researchers are even pushing the limit of complex 3D
structural design to motion structures that can change their shapes
from one state to another, tuning their physical properties in adapted
and active ways to varying physical environments23.

Manygroups have employedorigami andkirigami techniques, the
ancient folding and cutting arts24, given the potential of future intel-
ligent reconfigurable structures. Starting from 2D flexible structures
using a Miura-ori sheet25, Waterbomb base26, or Ron-Resch pattern27,
researchers have recently explored the design of 3D architected
structures usingmodular origami. Stackingmultiple origami sheets28,29

and assembling foldable modules15,16,30–33 are the currently available
methods to construct 3D architected structures. Stacked Miura-ori28

and Tachi–Miura polyhedron30 are deployable with flat-foldability,
with a single origami sheet serving as the building block. Assembled
structures with folding modules using prismatic polyhedrons15,16,33,
tubular bellows31,34,35, and kirigami32 have demonstrated the potential
of isotropic design using spatial symmetry while displaying single and
multiple degrees of freedom (DOFs)15,16,33.

All these methods require the construction of a building block
(unit cell) with crease patterns and spatial periodicity (tessellation).
This bottom-up design approach is convenient for controlling the
kinematic and kinetic properties of the overall 3D architected struc-
tures with only a unit-cell design. However, this bottom-up design
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approach has a critical limitation when constructing practical engi-
neering and artistic structures, the shapes of which are mostly 3D
curvilinear (e.g., automotive and aerospace structures with various
curvatures). Such structures require that the size and shape of the
building block no longer be homogeneous in the design domain. Most
rectangular or cubic engineering structures have curved edges for
minimum stress concentration and safety. Because of the break in
spatial periodicity at the boundary of curvilinear geometries, the
kinematic and kinetic properties of the unit cell tend to differ from
those of the tessellated structure, limiting the structural implementa-
tion of the architected origami materials.

The top-down approach to the design, often called ‘inverse
design,’ of mechanical metamaterials has been explored to identify
tessellated microstructures and target physical properties such as
anisotropic stiffness. Topology optimization has been a typical
approach to identify microstructures36–38. Very few studies have
explored the inversedesignof 3Darchitected structures39. Theexisting
inverse-design methods can only be applied to 2D curvilinear surfaces
with origami and kirigami40–47 and not to volumetric 3D spatial curvi-
linear geometries and their reconfigurability.

In this work, we explore an inverse design for 3D reconfigurable
architected origamimaterials.Without tessellating a constant building
block, our method produces volumetric gradient cells mapped into
complex curvilinear 3D geometries, followed by topological recon-
struction of modules. We develop a top-down approach making unit
cellsmap into a sphere, hyperboloid, cone, twisted cylinder, torus, and
any combined curvilinear shapes with reconfigurability.

Results
Synthesis of nonperiodic modular origami
Inspired by the pioneering work on the space-filling tessellation to
construct 3D modular origami with prismatic tubes16, we implement
the synthesis principle to 3D curvilinear shapes with nonperiodic tiling
of irregular polyhedrons. Figure 1 presents our synthesis procedure for
3D curvilinear modular origami structures. A unit cell consisting of
single or multiple polyhedrons is first selected, as shown in Fig. 1a. A
nonperiodic tessellation into a prescribed curvilinear geometry is then
applied, as illustrated in Fig. 1b, to build a template, such as that pre-
sented in Fig. 1c. While constructing the template, we implement a
volumetric mapping of the unit cell using the optimum transport
algorithm48 for a target number of tessellations, e.g., 2 × 2× 3 in Fig. 1c,
to obtain deformed irregular polyhedrons generated by the minimum
energy for deformation. During the volumetric mapping, the poly-
hedrons in unit cells are involved in nonhomogeneous deformation.

Next, we spatially shrink the deformed polyhedrons in the tem-
plate while implementing a scaling constraint, as illustrated in Fig. 1d:

Sa1,p
= Sb1,p

= Sa2,p
= Sb2,p

, ð1Þ

where the scaling ratios Sai,p
=

ai,p�Ap

�� ��
oi�Ap

�� �� and Sbi,p
=

jbi,p�Bp j
doi�Bpe ði= 1, 2Þ.oi is the

centroid of the deformed i-th polyhedrons in the template. Ap and Bp

belong to the edgeof thep-th face sharedby two adjacent polyhedrons
in the template. The scaling constraint in Eq. (1) forces the direction of
connection on the p-th face to be parallel after shrinking, i.e.,
a1,p � a2,p =b1,p � b2,p, critical for building a connection with adjacent
shrunken polyhedrons. Our work is different from previous work16,
where the connectingdirectionwas normal to the regular polyhedrons;
instead, we determine the connecting direction by bridging the cen-
troids of the deformed polyhedrons in the template. We obtain the
length of the connection Lp between the adjacent shrunken poly-
hedrons:

Lp = Sa1,p
jo2 � o1j: ð2Þ

Next, we connect the shrunken polyhedrons by extruding
prismatic tubes on each shared face inside the template, as shown
in Fig. 1e. Equations (1) and (2) are applied to the generation of
tubes to connect adjacent shrunken polyhedrons. We apply a
different construction method for the tube on the exterior
boundary surface of a shrunken polyhedron, which was at the
boundary of the template before the volumetric shrinkage. The
tubular length db generated along the exterior boundary surface
in Fig. 1d is determined by the distance between the template and
the exterior surface of a shrunken polyhedron along its average
normal direction. After the geometric reconstruction, we obtain a
nonperiodic modular origami structure with a curvilinear
boundary, as shown in Fig. 1e. Note that the connected tubes serve
as structural components, whereas the shrunken polyhedrons
function as porous holes. See the synthesis in Supplementary
Movie 1.

We can build other complex nonperiodic modular origami
structures using the geometric reconstruction with the volu-
metric mapping into an arbitrary target shape and volumetric
shrinkage of deformed polyhedrons, as illustrated in Fig. 1f–j.
Additional examples of the geometric reconstruction are pro-
vided in Supplementary Fig. 3 in the Supplementary Information
(SI). Although we focus on nonperiodic modular origami struc-
tures in this work, our synthesis method of the spatial architected
materials can also be applied to planar cases, as illustrated in
Supplementary Fig. 1 of the SI, demonstrating that our design
method is universal.

Construction of reconfigurable structures
Although the geometric reconstruction generates arbitrary 3D
curvilinear structures through volumetric mapping and volu-
metric shrinkage of unit cells, the constructed origami structures
hardly produce reconfigurability. From a macroscopic perspec-
tive, the fully connected origami modules with fully extruded
tubes produce spatial loops, constraining the motion of the
modules49. Note that a module denotes a single origami unit con-
structed by the extruded tubes from the shrunken polyhedrons
after geometric reconstruction, as illustrated in Fig. 2a. One can
select rigid or flexible modules depending on their geometry and
topology. From a microscopic perspective, the extruded prismatic
tubes of irregular shrunken polyhedrons limit the range of motion
of the whole assembly, as shown in Fig. 2 (see also Supplementary
Fig. 4 of the SI).

To release themicroscopic immobility, extruded tubes generated
by the geometric reconstruction in Fig. 1e–j or Fig. 2a follow the geo-
metric modification procedure:

min
X

vi � �vi

�� ���� �� ð3Þ

s:t: It � dt =0, for t = 1, 2, 3, . . . ,Nt ð4Þ

It � dt ¼ 0 for t ¼ 1; 2; 3; . . . ;Nt

Jq � θq =0, for q= 1, 2, 3, . . . ,Nq ð5Þ

pij
� p1j

×p2j

� �
=0: for j = 1; 2; 3; . . . ;Nj ð6Þ

The objective function in Eq. (3) minimizes the change of the
nodal position vi � �vi on the boundary of the initial architected
materials in Fig. 2a, where vi and �vi are the adjusted and initial
position vectors of the i-th node on the boundary, respectively.
During the modification, we allow the initial modular origami
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Fig. 1 | Geometric reconstruction of nonperiodic modular origami structures.
a Unit cell with polyhedrons, b target shape, and c template with deformed poly-
hedrons. The details of the volumetric mapping from ‘a’ to ‘c’ are provided in
Methods. d Volumetric shrinkage; the shrunken polyhedrons are highlighted in
purple. e Extrusion of prismatic tubes to connect adjacent shrunken polyhedrons.

f–jOther examples of the geometric reconstruction for synthesizing 3Darchitected
materials with modular origami. The rightmost column shows the 3D-printed
prototypes (see Supplementary Note 4 of the SI for fabrication details). Scale
bar, 1 cm.
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structures after the geometric reconstruction to have a combi-
nation of parallel and intersecting tubes whose numbers are Nt

and Nq, respectively. Figure 2c, d presents examples of inter-
secting and parallel tubes, respectively. Equation (4) implements
the foldability of parallel tubes bymaximizing the range of motion

of the prismatic tubes with parallel hinges; dt = d1t
,d2t

,d3t
,:::,df t

h i
,

where f is the number of faces of the t-th tube. It is a constraint

matrix whose components are determined by the extruded poly-

gon shape; see more details of the constraints in Supplementary

Note 2 of the SI. Note that Eq. (4) is the flat-foldable constraint for

the distance d of the extruded polygons. Equation (5) adjusts the

motion of the tubes whose hinges intersect to a point. Equation (5)

constrains the angle θ between adjacent intersecting

hinges;θq = θ1q
,θ2q

,θ3q ,:::,θeq

h i
, where e is the number of side walls

of the q-th tube. Jq is a constraint matrix whose components are
determined by the polygon shape of the side wall of the extruded
tubes. Further details on the constraints are provided in Supple-
mentary Note 2 of the SI. Equation (6) ensures that all Nj faces
remain planar. For a single face j, pij

is the vector attached to the
i-th edge of the j-th face.

Figure 2 shows the geometric modification of an architected
structure constructed using the geometric reconstruction. Unlike the
initial architected structure in Fig. 2a, the modified configuration in
Fig. 2bmakes the prismatic tubes deformable to theirmaximum range
of motion while maintaining the macroscopic sphere shape. Note that
the prismatic tubes in the initial configuration have limited motion, as
illustrated in Fig. 2d; however, the prismatic tubes of the modified
configuration are flat-foldable, as illustrated in Fig. 2e. Notably, the
geometric modification maximizes the sole foldability of individual
prismatic tubes.

After the geometric modification, we search through all the pos-
sible geometric and topological combinations of each module,
applying the graph theory in the assembly. A graph consists of vertices
and edges representingmodules and tubular connections, as shown in

Fig. 3a.3, a.8. To attain the target mobility �Ndof , we formulate a search
algorithm of reconfigurable structures.

min Ndof ðxÞ � �Ndof

� �2 ð7Þ

s:t: xi 2 Di, for i= 1, 2, 3, . . . ,Nx ð8Þ

�CiðxÞ+ 2≤0, ð9Þ

CpðxÞ � 1 = 0: ð10Þ

where xi represents the xi-th module and Di is a collection of all
modules for the i-th shrunken polyhedron. Nx is the total number of
modules in the assembly. Ndof ðxÞ is the DOF for the combination
x = xiêi
� �

, where êi is a basis of vector x. The constraints in Eqs. (9) and
(10) control the structural integrity of the assembly, where CiðxÞ is the
number of connections on the i-th node and CpðxÞ is the number of
connected graph components. We solve this optimization problem
using a genetic algorithm; see more details in Supplementary Note 2
of the SI.

Figure 3a shows the inverse design while emphasizing the topo-
logical reconstruction, e.g., constructing a reconfigurable structure
generated by a sphere template comprising deformed irregular tet-
rahedra and octahedra. After the geometric reconstruction, the initial
modular origami structure is modified using Eqs. (3)–(6) before the
topological reconstruction.

Depending on the topologically reconstructed modules
selected, e.g., Fig. 3a.5, a.6, we can construct assemblies whose
graphs are fully connected with seventeen basic cycles (nbc = 17,
Fig. 3a.4) or partially connected with fewer basic cycles (nbc =3,
Fig. 3a.9), providing reconfigurable structures with nDOF =0 or 10,
respectively, as shown in Fig. 3a.2, a.7 (see also Supplementary
Movie 2). As demonstrated by the numerical simulation and
experiments in Fig. 3b, this new structure can change its shape
from a sphere to other shapes via global motion at the hinges (see
the transformation in Supplementary Movie 3).

a

Geometric
modifica�on

bConfigura�on a�er 
geometric reconstruc�on

e

150° 180°122°

d

Template

Configura�on a�er 
geometric modifica�on

= 91° 98°

c

Module

Fig. 2 | Geometric modification. a Initial configuration of modular origami
structures of a sphere generated by volumetricmapping and volumetric shrinkage
3 × 3 × 3ð Þ of a cubic unit cell. Note that modules can be built by selective tubular
extrusion of shrunken polyhedrons. b Configuration after geometric modification.
Equations (4) and (5) produce the constraints for the rectangular tubes, i.e.,
d1 =d2 =d3 =d4 and θ1 =θ2 =θ3 =θ4. c A tube with intersecting hinges, where θ1 is
the angle between the projected v4 � v1 and v3 � v2, and θ2 is the angle between

v3 � v2 and v1 � v6. θ3 and θ4 are similarly obtained. The extended lines of these
four hinges (v1 � v4,v2 � v3,v6 � v7,v5 � v8) intersect at a point. d A tube with
parallel hinges having limited foldability in the initial configuration. e A tube with
intersecting hinges having flat-foldability in the modified configuration with a
planar constraint ofp3� p1 ×p2

� �
=0, where vectorsp1,p2, and p3 are on the edges

of a face.
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Figure 3c, d shows the topological reconstruction of modular
origami structures generated by other templates — a cone and
hyperboloid. When we select the same module topologically
as the spherical structure in Fig. 3a.6 for the cone and hyperboloid
structures in Fig. 3c, d, the modular origami structures

produce the same spatial connection topology (nbc =3) and the
same reconfigurable mobility (see Supplementary Movie 4).
Therefore, the reconfigurability is controlled by the spatial
connection of the modules and not by the geometry of the
template.

#3 

a.1
a.2 a.3 a.4

a.5

a.6

a.7 a.8 a.9

b

Module 
(flexible)

#2 

c

d

Unit cell

Target shape

Template

Module
(fully connected)

#1 

Topological 
reconstruc�on

Module

Module

Topological 
reconstruc�on

Fig. 3 | Procedure to produce reconfigurability through topological recon-
struction. a.1 Sphere template constructed from the volumetric mapping
2× 2 × 2ð Þ of a unit cell combining a tetrahedron and octahedron; a.2 Pris-
matic architected material after geometric modification; a.3 Two adjacent
modules connected by prismatic tubes; a.4 Construction of a fully connected
graph with basic cycles nbc = 17; a.5 Rigid module fully connected with tubes;
a.6 Modules with nonzero mobility; a.7 Deformable assembly with 10 DOFs
after topological reconstruction; a.8 Two disconnected modules; and a.9

Reconstructed graph with fewer basic cycles, where nbc = 3. b Transformation
of a reconfigurable structure where the DOFs are denoted by 10 dihedral
angles with colored hinges. The change of angles is discussed in Supple-
mentary Movie 3 and Supplementary Note 4 of the SI. See details of the
physical prototypes in Supplementary Note 4 of the SI. c, d Cone and
hyperboloid templates having the same graph as a.9 with nbc = 3, producing a
reconfigurable structure with 10 DOFs. The size of the scale bar in b is 5 cm.
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Mobility evaluation
We implement transformation by obtaining the independent dihedral
angles, as demonstrated in Figs. 3b–d and 4. Following the assumption
of the rigid face and flexible hinges of prismatic modular origami, we
identify the independent dihedral angles from a linearized constraint
matrix. We apply additional kinematic constraints on every vertex: the
distance between two vertices on an edge remains constant during
reconfiguration (see Supplementary Fig. 8 in the SI for further details).
While linearizing the constraints with a matrix form Jv, we obtain
Jv � dv=050, where dv is the infinitesimal displacement of vertices. We
can also obtain the infinitesimal displacement of all the dihedral angles
as dϕ= Jh � dv. In matrix form, the constraints can be expressed as

Jv 0

Jh �1

� �
dv

dϕ

� �
=0: ð11Þ

By calculating the reduced row echelon form of J =
h
Jv
Jh

0
�1

i� �
, we

can determine the free variables in terms of dϕ, which can produce
movement of structural components, leading to reconfiguration (see
Supplementary Note 3 for further details).

Figure 4 presents an example of reconfigurable structures
assembledwith varying geometry and topologyofmodules for a target
DOF. Applying the geometric modification in Eqs. (3)–(6) and topolo-
gical reconstruction in Eqs. (7)–(10) to 28 unit cells within a volumetric
mapping size of 4051,52, we obtain sphere reconfigurable structures for
various target DOFs. Our algorithm provides multiple solutions, e.g.,
multiple combinations of geometry and topology for a targetnDOF . For
example, unit cell #1 with a mapping size of 2 × 2 × 2 and unit cell #22

with a mapping size of 3 × 3 × 3 provide several topological options
with varying nbc for target mobility, as shown in Fig. 4.

We plot the DOFs with varying connecting topology while
demonstrating various deformation modes, including uniaxial exten-
sion and volumetric shrinkage, as shown in Fig. 4d, e (see the trans-
formation in Supplementary Movie 5). The mobility can also be
validated using a linear eigenmode analysis16.

The same unit cell, e.g., a cubic unit cell, provides different
reconfigurability depending on the variation of the topological con-
nections, which is controlled by the mapping size. Small-sized poly-
hedrons with a 3 × 3 × 3 mapping can provide a vaster design space in
mobility than large-sizedpolyhedronswith a 2 × 2 × 2mappingbecause
of the greater chance of available topology, as illustrated in Fig. 4. A
unit cell consisting of two tetrahedrons and one octahedron with a
2 × 2 × 2 mapping produces a maximum of 40 connections (nc =40),
resulting in zero mobility, as illustrated in Fig. 3a. Even releasing the
connection only produces a narrow range of design space in mobility
because of the extruded tubular shapes of the tetrahedron and octa-
hedron being a triangular lattice prismwith kinematicmobility of zero.

Discussion
3D curvilinear structures are ubiquitous in automotive, aerospace, and
ocean engineering structures. To date, the design of architected
materials has relied on the bottom-up design approach, using planar
and orthogonal periodic tessellation of modules23,53, which is con-
venient for structural design. However, this bottom-up approach has a
critical limitation when constructing curvilinear 3D engineering and
artistic structures, where the size and shape of the building blocks are
no longer homogeneous in the design domain. The reconstruction of
geometry and topology in this study provides a solution for designing

#1 
2 × 2 × 2

#22 
2 × 2 × 2

#22
3 × 3 × 3

a b c

d

e

Fig. 4 | Scatter plot on the inverse-designed mobility of 3D modular origami
structures showing reconfigurable structures for various unit cells and map-
ping sizes; each point represents a combination of geometry and topology of
modules. a Template #1 was obtained using a 2 × 2× 2 mapping of a unit cell
consisting of two tetrahedrons and one octahedron, b Template #22 was obtained
using a 2 × 2× 2mapping of a cubic unit cell; and c template #22wasobtainedusing

a 3 × 3× 3mapping of a cubic unit cell. d Selective sphere reconfigurable structures
constructed using template #22 of (c) showing (d) uniaxial extension mode of a
modular origami with nbc = 18 and ndof =6, and (e) volumetric shrinking mode of a
modular origami structure with nbc = 15 and ndof = 4. nc denotes the number of
edges in the graph.
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non-periodic and curvilinear 3D structures and their reconfigurability.
The geometric reconstruction via volumetric mapping of polyhedrons
followed by volumetric shrinkage can be used to construct a stress-
free 3D curvilinear structure. The fully connected irregular modules
produce spatial loops and constrain inter-and intra-modular motions,
delivering a rigid yet stiff curvilinear structure. The topology recon-
struction after geometric modification can provide solutions for an
inverse design of reconfigurable structures with multi-DOF. The
reconfigurable motion is controlled by the topology of the spatial
connection of modules, not by the geometry of the templates. For
advanced reconfigurability, one may need an optimization of shape
transformation, which is beyond the scope of this work but can be
explored near future.

The inverse design of 2D origami structures can generate a cur-
vilinear surface with local control of the variable curvature40,46.
Because of the instability (local snapping) of the out-of-plane defor-
mation during reconfiguration, relatively high local energy is needed
for the transformation40. The bottom-up approach with periodic
modular origami structures can construct a curved shape by filling
building blocks inside the curvilinear space15,39. However, the bottom-
up approach cannot yield a smooth surface; it only provides discrete
curves, whereas the geometric reconstruction in this work can pro-
duce a smooth 3D curvilinear structure. Notably, our inverse design of
reconfigurability produces multiple solutions depending on the loop
topology and geometry of modules.

Our top-down approach can expand the design space of modular
origami to 3D non-periodic structures and 3D curvilinear geometries—
spheres, hyperboloids, cones, twisted cylinders, and toruses, over-
coming the limitation of planar and spatial tessellations for periodic
structural design. Unlike 2D reconfigurable curvilinear origami struc-
tures, our 3Dmotion structures can be reconfigured into other shapes
with multi-DOF and are frustration-free. This work will advance the
design of 3D architected materials with reconfigurability and disrupt
traditional periodic-tessellation-based 3D metamaterial design. The
volumetric shrinkage of space-filled polyhedrons can be applied for
both orthogonal and curvilinear coordinates,meaning that our inverse
design method is universal and can be applied to both periodic and
non-periodic structures. Our physical prototypes of 3D curvilinear
structures fabricated using additive manufacturing validate the tun-
able motion, demonstrating untethered actuation by embedded hard
magnets and moving external magnetic fields (see Supplementary
Movies 3 and 4). The non-contact actuation of motion structures
demonstrates thepotential of activemetamaterials,morphingdevices,
and soft robots on the mesoscale. Advanced micro-fabrication tech-
niques such as two-photon lithography7 andmicro-stereolithography11

can be applied to our reconfiguration systems on the microscale, e.g.,
for the design of battery electrodes54 and microelectronic mechanical
systems55.

Methods
Volumetric mapping
To implement the volumetric mapping of a reference unit into the
target shape, we use open-source software (GRAPHITE, ver. 3, devel-
oped by Bruno Lévy)56, which conducts semi-discrete optimal
transport48. For a given number of unit cells, we build a template. As
the input to the software, we prepare two 3D object files: the boundary
of a target shape and a unit cell with a given volumetric filling size, e.g.,
3 × 3 × 3, using a custom-madeMATLAB script.We import these two3D
object files and volumetrically mesh them in the software while
aligning the size and position of both meshes using a pre-processing
tool in GRAPHITE. Next, we set the density of the sampled mesh to
~400,000, transporting the sampled mesh to fit the target shape. The
software outputs a transported sample, which records the positions of
these ~400,000 nodes in both the initial geometry and target shape.
However, our template usually has fewer nodes; building the template

with a targeting profile requires matching the nodes of the unit cells
with the sample in the initial shape, which is achieved using the
knnsearch tool in MATLAB. We obtain the template by replacing
the positions of the nodes of the unit cells with their counterparts in
the transported sample with the target shape.

Experiments
We prototype a rigid model using multi-material inkjet 3D printing
(MultiJet, ProJet MJP 5600, 3D systems) and a MATLAB script to build
an origami mesh model with a prescribed wall thickness. We fabricate
reconfigurable prototypes with an assembly of paperboards (Silhou-
ette Cameo) and additive manufacturing by stereolithography (SLA)
by Form 3 (Formlabs). We print modular origamis and selectively
embedded permanent magnets (NdFeB) to demonstrate a reconfi-
gurable structure with remote control. We apply a rotational uniform
magnetic field by a Halbach array composed of a circumferential array
of permanent magnets. To validate our numerical simulation of
reconfigurability with experiments, we fabricate a reconfigurable
structure and use a 3D scanner (Einscan Pro) to capture the trans-
formed shapes. We show the quantitative comparison of the inde-
pendent dihedral angles of the reconfigurable structure between
numerical simulation and 3D scanned measurement in Supplemen-
tary Note 4.

Data availability
The data supporting this study’s findings are included in themain text,
Supplementary Information, or are available from the corresponding
authors upon request.

Code availability
The MATLAB model used to generate the modular origami structures
is available via a GitHub repository link provided at the following URL:
https://github.com/KaiXiao55/origami-architected-materials.git.
Other algorithmsnecessary to reproduce thefigures are available from
the corresponding authors on request.
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